#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using System.Text; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines { /// /// Implementation of Daniel J. Bernstein's Salsa20 stream cipher, Snuffle 2005 /// [BestHTTP.PlatformSupport.IL2CPP.Il2CppSetOption(BestHTTP.PlatformSupport.IL2CPP.Option.NullChecks, false)] [BestHTTP.PlatformSupport.IL2CPP.Il2CppSetOption(BestHTTP.PlatformSupport.IL2CPP.Option.ArrayBoundsChecks, false)] [BestHTTP.PlatformSupport.IL2CPP.Il2CppSetOption(BestHTTP.PlatformSupport.IL2CPP.Option.DivideByZeroChecks, false)] [BestHTTP.PlatformSupport.IL2CPP.Il2CppEagerStaticClassConstructionAttribute] public class Salsa20Engine : IStreamCipher { public static readonly int DEFAULT_ROUNDS = 20; /** Constants */ private const int StateSize = 16; // 16, 32 bit ints = 64 bytes private readonly static uint[] TAU_SIGMA = Pack.LE_To_UInt32(Strings.ToAsciiByteArray("expand 16-byte k" + "expand 32-byte k"), 0, 8); internal void PackTauOrSigma(int keyLength, uint[] state, int stateOffset) { int tsOff = (keyLength - 16) / 4; state[stateOffset] = TAU_SIGMA[tsOff]; state[stateOffset + 1] = TAU_SIGMA[tsOff + 1]; state[stateOffset + 2] = TAU_SIGMA[tsOff + 2]; state[stateOffset + 3] = TAU_SIGMA[tsOff + 3]; } [Obsolete] protected readonly static byte[] sigma = Strings.ToAsciiByteArray("expand 32-byte k"), tau = Strings.ToAsciiByteArray("expand 16-byte k"); protected int rounds; /* * variables to hold the state of the engine * during encryption and decryption */ private int index = 0; internal uint[] engineState = new uint[StateSize]; // state internal uint[] x = new uint[StateSize]; // internal buffer private byte[] keyStream = new byte[StateSize * 4]; // expanded state, 64 bytes private bool initialised = false; /* * internal counter */ private uint cW0, cW1, cW2; /// /// Creates a 20 round Salsa20 engine. /// public Salsa20Engine() : this(DEFAULT_ROUNDS) { } /// /// Creates a Salsa20 engine with a specific number of rounds. /// /// the number of rounds (must be an even number). public Salsa20Engine(int rounds) { if (rounds <= 0 || (rounds & 1) != 0) { throw new ArgumentException("'rounds' must be a positive, even number"); } this.rounds = rounds; } public virtual void Init( bool forEncryption, ICipherParameters parameters) { /* * Salsa20 encryption and decryption is completely * symmetrical, so the 'forEncryption' is * irrelevant. (Like 90% of stream ciphers) */ ParametersWithIV ivParams = parameters as ParametersWithIV; if (ivParams == null) throw new ArgumentException(AlgorithmName + " Init requires an IV", "parameters"); byte[] iv = ivParams.GetIV(); if (iv == null || iv.Length != NonceSize) throw new ArgumentException(AlgorithmName + " requires exactly " + NonceSize + " bytes of IV"); ICipherParameters keyParam = ivParams.Parameters; if (keyParam == null) { if (!initialised) throw new InvalidOperationException(AlgorithmName + " KeyParameter can not be null for first initialisation"); SetKey(null, iv); } else if (keyParam is KeyParameter) { SetKey(((KeyParameter)keyParam).GetKey(), iv); } else { throw new ArgumentException(AlgorithmName + " Init parameters must contain a KeyParameter (or null for re-init)"); } Reset(); initialised = true; } protected virtual int NonceSize { get { return 8; } } public virtual string AlgorithmName { get { string name = "Salsa20"; if (rounds != DEFAULT_ROUNDS) { name += "/" + rounds; } return name; } } public virtual byte ReturnByte( byte input) { if (LimitExceeded()) { throw new MaxBytesExceededException("2^70 byte limit per IV; Change IV"); } if (index == 0) { GenerateKeyStream(keyStream); AdvanceCounter(); } byte output = (byte)(keyStream[index] ^ input); index = (index + 1) & 63; return output; } protected virtual void AdvanceCounter() { if (++engineState[8] == 0) { ++engineState[9]; } } public unsafe virtual void ProcessBytes( byte[] inBytes, int inOff, int len, byte[] outBytes, int outOff) { if (!initialised) throw new InvalidOperationException(AlgorithmName + " not initialised"); Check.DataLength(inBytes, inOff, len, "input buffer too short"); Check.OutputLength(outBytes, outOff, len, "output buffer too short"); if (LimitExceeded((uint)len)) throw new MaxBytesExceededException("2^70 byte limit per IV would be exceeded; Change IV"); fixed (byte* pinBytes = inBytes, poutBytes = outBytes, pkeyStream = keyStream) { int ulongLen = len / sizeof(ulong); for (int i = 0; i < ulongLen; i++) { if (index == 0) { GenerateKeyStream(keyStream); AdvanceCounter(); } ulong* pin = (ulong*)pinBytes; ulong* pout = (ulong*)poutBytes; ulong* pkey = (ulong*)pkeyStream; pout[i + outOff] = pkey[index] ^ pin[i + inOff]; index = (index + 1) & ((64 / sizeof(ulong)) - 1); //poutBytes[i + outOff] = (byte)(pkeyStream[index] ^ pinBytes[i + inOff]); //index = (index + 1) & 63; } int remainingOffset = ulongLen * sizeof(ulong); index = (index * sizeof(ulong)) & 63; for (int i = remainingOffset; i < len; i++) { if (index == 0) { GenerateKeyStream(keyStream); AdvanceCounter(); } poutBytes[i + outOff] = (byte)(pkeyStream[index] ^ pinBytes[i + inOff]); index = (index + 1) & 63; } } } public virtual void Reset() { index = 0; ResetLimitCounter(); ResetCounter(); } protected virtual void ResetCounter() { engineState[8] = engineState[9] = 0; } protected virtual void SetKey(byte[] keyBytes, byte[] ivBytes) { if (keyBytes != null) { if ((keyBytes.Length != 16) && (keyBytes.Length != 32)) throw new ArgumentException(AlgorithmName + " requires 128 bit or 256 bit key"); int tsOff = (keyBytes.Length - 16) / 4; engineState[0] = TAU_SIGMA[tsOff]; engineState[5] = TAU_SIGMA[tsOff + 1]; engineState[10] = TAU_SIGMA[tsOff + 2]; engineState[15] = TAU_SIGMA[tsOff + 3]; // Key Pack.LE_To_UInt32(keyBytes, 0, engineState, 1, 4); Pack.LE_To_UInt32(keyBytes, keyBytes.Length - 16, engineState, 11, 4); } // IV Pack.LE_To_UInt32(ivBytes, 0, engineState, 6, 2); } protected unsafe virtual void GenerateKeyStream(byte[] output) { SalsaCore(rounds, engineState, x); fixed (uint* ns = x) fixed (byte* bs = output) { int off = 0; uint* bsuint = (uint*)bs; for (int i = 0; i < 4; ++i) bsuint[i] = ns[i]; } } internal unsafe static void SalsaCore(int rounds, uint[] input, uint[] x) { fixed (uint* pinput = input, px = x) { uint x00 = pinput[0]; uint x01 = pinput[1]; uint x02 = pinput[2]; uint x03 = pinput[3]; uint x04 = pinput[4]; uint x05 = pinput[5]; uint x06 = pinput[6]; uint x07 = pinput[7]; uint x08 = pinput[8]; uint x09 = pinput[9]; uint x10 = pinput[10]; uint x11 = pinput[11]; uint x12 = pinput[12]; uint x13 = pinput[13]; uint x14 = pinput[14]; uint x15 = pinput[15]; for (int i = rounds; i > 0; i -= 2) { // R(x, y) => (tempX << y) | (tempX >> (32 - y)) uint tempX = (x00 + x12); x04 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x04 + x00); x08 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x08 + x04); x12 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x12 + x08); x00 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = (x05 + x01); x09 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x09 + x05); x13 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x13 + x09); x01 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x01 + x13); x05 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = (x10 + x06); x14 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x14 + x10); x02 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x02 + x14); x06 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x06 + x02); x10 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = (x15 + x11); x03 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x03 + x15); x07 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x07 + x03); x11 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x11 + x07); x15 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = (x00 + x03); x01 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x01 + x00); x02 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x02 + x01); x03 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x03 + x02); x00 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = (x05 + x04); x06 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = (x06 + x05); x07 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = (x07 + x06); x04 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = (x04 + x07); x05 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = x10 + x09; x11 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = x11 + x10; x08 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = x11 + x10; x09 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = x09 + x08; x10 ^= (tempX << 18) | (tempX >> (32 - 18)); tempX = x15 + x14; x12 ^= (tempX << 7) | (tempX >> (32 - 7)); tempX = x12 + x15; x13 ^= (tempX << 9) | (tempX >> (32 - 9)); tempX = x13 + x12; x14 ^= (tempX << 13) | (tempX >> (32 - 13)); tempX = x14 + x13; x15 ^= (tempX << 18) | (tempX >> (32 - 18)); } px[0] = x00 + pinput[0]; px[1] = x01 + pinput[1]; px[2] = x02 + pinput[2]; px[3] = x03 + pinput[3]; px[4] = x04 + pinput[4]; px[5] = x05 + pinput[5]; px[6] = x06 + pinput[6]; px[7] = x07 + pinput[7]; px[8] = x08 + pinput[8]; px[9] = x09 + pinput[9]; px[10] = x10 + pinput[10]; px[11] = x11 + pinput[11]; px[12] = x12 + pinput[12]; px[13] = x13 + pinput[13]; px[14] = x14 + pinput[14]; px[15] = x15 + pinput[15]; } } /** * Rotate left * * @param x value to rotate * @param y amount to rotate x * * @return rotated x */ //internal static uint R(uint x, int y) //{ // return (x << y) | (x >> (32 - y)); //} private void ResetLimitCounter() { cW0 = 0; cW1 = 0; cW2 = 0; } private bool LimitExceeded() { if (++cW0 == 0) { if (++cW1 == 0) { return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6) } } return false; } /* * this relies on the fact len will always be positive. */ private bool LimitExceeded( uint len) { uint old = cW0; cW0 += len; if (cW0 < old) { if (++cW1 == 0) { return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6) } } return false; } } } #pragma warning restore #endif